

Deicorp Projects (Crows Nest) Pty Ltd

Trafific and Parking Impact Assessment Report

Fiveways, Crows Nest

16 December 2021

© Copyright Barker Ryan Stewart Pty Ltd 2021 All Rights Reserved

Project No.	CC200015
Author	RD
Checked	GB
Approved	GB

Rev No.	Status	Date	Comments
7	Final	$16 / 12 / 2021$	

COPYRIGHT

Barker Ryan Stewart reserves all copyright of intellectual property in any or all of Barker Ryan Stewart's documents. No permission, licence or authority is granted by Barker Ryan Stewart to any person or organisation to use any of Barker Ryan Stewart's documents for any purpose without the written consent of Barker Ryan Stewart.

REPORT DISCLAIMER

This report has been prepared for the client identified in section 1.0 only and cannot be relied on or used by any third party. Any representation, statement, opinion or advice, expressed or implied in this report is made in good faith but on the basis that Barker Ryan Stewart are not liable (whether by reason of negligence, lack of care or otherwise) to any person for any damage or loss whatsoever which has occurred or may occur in relation to that person taking or not taking (as the case may be) action in any respect of any representation, statement, or advice referred to above.

SYDNEY
P (02) 96590005
Esydney@brs.com.au

HUNTER

P (02) 49668388
E hunter@brs.com.au

Table of Contents

1 Introduction 4
1.1 References4
2 Existing Conditions 5
2.1 The Site 5
2.2 Surrounding Land Uses 6
2.3 Existing Road Network 6
2.4 Existing Traffic Volumes7
2.5 Public Transport, Pedestrians 9
3 Proposed Development 11
3.1 The Development 11
3.2 Access and Car Park 11
3.3 Service Vehicles and loading 11
3.4 Parking Provision and Requirements 11
4 Traffic Assessment 14
4.1 Trip Generation 14
4.1.1 Existing Development 14
4.1.2 Proposed Development: 14
4.2 Trip Distribution and Assignment 15
4.3 Impact of Generated Traffic 16
5 Conclusion 19

Appendix A - Bus Route Map Appendix B - Sydney Train Map Appendix C - Cycleway Network Map Appendix D - Swept Path Analysis Appendix E - SIDRA Results

1 Introduction

Barker Ryan Stewart have been engaged by Deicorp Projects (Crows Nest) Pty Ltd to prepare a Traffic and Parking Impact Assessment Report in accordance with the requirements of the NSW Government's "Guide to Traffic Generating Developments" and the North Sydney DCP 2013 to support a Planning Proposal to North Sydney Council for a mixed-use development consisting of residential apartments, commercial and retail space at the site known as the Five Ways Triangle on the Pacific Highway at Crows Nest.

The purpose of this report is to assess and address traffic, access, car parking and pedestrian issues generated by the proposed development. This can be briefly outlined as follows:

- The expected traffic generation to/from the proposed development.
- The impact of the proposed development on the road network.
- An analysis based on RMS traffic counts
- Vehicle parking provisions.
- Access design requirements.
- Provision for pedestrians
- Availability of public transport.

This Traffic and Parking Impact Assessment Report concludes that the subject site is suitable for the proposed development in relation to traffic impact, access and safety considerations.

1.1 References

- North Sydney Local Environmental Plan 2013
- North Sydney Development Control Plan 2013
- Existing Road Network - St Leonards and Crows Nest Station Precinct Transport Study prepared by Cardno for the NSW Department of Planning and Environment, 2017.
- NSW Roads and Maritime Services, Guide to Traffic Generating Developments, Version 2.2 dated October 2002.
- Australian Standards AS/NZS 2890.1: 2004 Parking - Off-street car parking, AS/NZS 2890.6: 2009 - Offstreet parking for people with disabilities and AS 2890.2: 2018 Off-street commercial vehicle facilities

2 Existing Conditions

2.1 The Site

Figure 1: Site Location
The Five Ways Triangle comprises multiple sites on a triangular parcel of land bounded by the Pacific Highway in the west, Falcon Street in the north and Alexander Street in the east as shown above in Figure 1.

The street addresses are 401 to 423 Pacific Highway, 3 to 15 Falcon Street and 8 Alexander Street, Crows Nest. The property descriptions are Lots 1 to 6 DP 16402, Lots 1 to 11 DP 29672, Lot 1 DP 127595 and Lot 1 DP 562966.

According to the North Sydney LEP 2013, the site is zoned as B4 Mixed Use which permits the development of a variety of land uses including residential flat buildings and commercial premises(business, office and retail).

2.2 Surrounding Land Uses

The area north of the site is zoned as B3 Commercial Core and Mixed Use comprising the area around Willoughby Road with a variety of small businesses and retail shops and cafes.

East of the site is predominately R2 Low Density Residential and some R3 Medium Density Residential. The areas west and south.

2.3 Existing Road Network

The roads immediately surrounding the site that will be directly impacted by the development are the Pacific Highway, Falcon Street and Alexander Street.

Pacific Highway

The Pacific Highway is part of the state road network that provides the major north / south route through the locality from the Warringah Freeway at North Sydney to the M1 Motorway. It functions as an arterial road with 3 lanes in each direction, including a part-time bus lane (southbound) and a T3 Lane (northbound). It runs along the western boundary of the site where there are bus zones on either side of the road.

Falcon Street
Falcon Street is part of the state road network providing an east-west link between the Pacific Highway and the Warringah Freeway and runs along the northern boundary of the site. In the immediate vicinity of the site Falcon Street is a clearway in both directions. Further east of Alexander Street there is time-limited parking permitted on both sides of the road. There is a bus zone located on the northern side of the road opposite the site.

Alexander Street

Alexander Street is a local street aligned generally in a north / south direction along the eastern boundary of the site. It is line marked as a four-lane, two-way road with a BB centreline. There is a bus zone on the eastern side of the road, time-limited parking on both sides outside of peak periods and NoStopping during peak periods.

Street-level shops are located along both sides of Alexander Street immediately surrounding the site and there is a Woolworths supermarket and 4-storey carpark on the corner of Alexander Street and Falcon Street.

Shirley Road

Shirley Road is a local street that provides a connection between the Pacific Highway and the residential area of Wollstonecraft east of the north shore rail line. It also connects with River Road, a local collector road providing an east/west connection between Lane Cove and Crows Nest.

The section of Shirley Road between the Pacific Highway and River Road is line marked as a four-lane,twoway road with a BB centreline and full-time No Stopping restrictions on both sides.

Intersections

The 3 intersections surrounding the site, Pacific Highway / Alexander Street, Pacific Highway / Falcon Street / Shirley Road and Falcon street / Alexander Street are all controlled by traffic signals. At the Pacific Highway / Falcon Street intersection the right turn movement from the Pacific Highway south leg to Falcon

Street is not permitted. Access from the Pacific Highway to Falcon Street is facilitated by right turns at the Pacific Highway / Alexander Street intersection and at the Alexander Street / Falcon Street intersection.

2.4 Existing Traffic Volumes

To assess the existing traffic volumes on the road network relevant to this report, AM and PM peak period traffic counts were conducted at the three signalised intersections surrounding the site on Wednesday 22 April 2020 from 7.00am to 9.00am and from 4.00pm to 6.00pm.

Note: It is acknowledged that the traffic counts were conducted at a time of reduced traffic volumes generally across Sydney due to the Coronavirus pandemic. Consequently, SCATS traffic count data was obtained from Transport for NSW for a typical mid-week day in February 2020 for the Pacific Highway / Alexander Street and the Pacific Highway / Falcon Street / Shirley Road intersections and used to calibrate the observed traffic data.

The April 2020 traffic counts at these intersections were compared to the SCATS detector counts recorded on Wednesday 5 February 2020. This comparison indicated that the February 2020 SCATS volumes were significantly higher than the April 2020 counts in both peak periods as follows:

	SCATS Volumes		Counts		\% Increase	
	AM	PM	AM	PM	AM	PM
Pacific Hwy / Alexander St	2875	2681	1364	1338	210%	200%
Pacific Hwy / Falcon St	3516	3716	2136	2293	165%	162%

Consequently, the April 2020 volumes at all intersections were increased by these factors for input to the SIDRA modelling.

The results of these calibrated traffic counts are illustrated below.

Figure 2: Pacific Highway / Alexander Street

Figure 2: Pacific Highway / Falcon Street / Shirley Road

Figure 3: Falcon Street / Alexander Street

The calibrated traffic counts and SCATS data for the 3 intersections for this assessment provide data on the current hourly volumes and an indication of the existing peak hour operational performance of eachof the roads in the area surrounding the site.

Below is an overview of the hourly traffic volumes and the current operational performance of the surrounding network, based on the 'Guide to Traffic Generating Developments' that states:
'typical one-way mid-block lane capacities on urban arterial roads under interrupted flow conditions are 900-1000 veh/hr/lane. This calculation assumes Clearway conditions. The capacity falls to 600 veh/hr/lane for a kerbside lane with occasional parked vehicles. These capacities at times may increase under ideal conditions to $1200-1400$ veh/hr.'

Pacific Highway (North of Falcon Street)

AM - 2,392 vehicles per hour two-way (1,216 northbound and 1,176 southbound). The northbound carriageway (3 lanes) averaged 405 vehicles per lane (LoS B). The southbound carriageway (3 lanes) averaged 392 vehicles per lane (LoS B).

PM - 2,123 vehicles per hour, two-way (1,038 northbound and 1,085 southbound). The northbound carriageway (3 lanes) averaged 346 vehicles per lane LoS B). The southbound carriageway (3 lanes) averaged 362 vehicles per lane (LoS B).

These volumes indicate that the Pacific Highway is operating at less than 50% capacity during peakperiods.
Falcon Street
AM - 1,652 vehicles per hour, two-way (860 eastbound and 792 westbound). Eastbound carriageway (2 lanes) averaged 430 vehicles per lane (LoS C). Westbound carriageway (2 lanes) averaged 396 vehicles per hour (LoS B).

PM - 1,685 vehicles per hour, two-way (742 eastbound and 943 westbound). Eastbound carriageway (2 lanes) averaged 371 vehicles per lane (LoS B). Westbound carriageway (2 lanes) averaged 472 vehicles per hour (LoS B).

These volumes indicate that Falcon Street is operating at around 50% capacity during peak periods.

Shirley Road

AM - 1,161 vehicles per hour, two-way (701 eastbound and 460 westbound). Eastbound carriageway (2 lanes) averaged 350 vehicles per lane (LoS B). Westbound carriageway (2 lanes) averaged 230 vehicles per hour (LoS A).

PM - 1,622 vehicles per hour, two-way (568 eastbound and 1,054 westbound). Eastbound carriageway (2 lanes) averaged 284 vehicles per lane (LoS B). Westbound carriageway (2 lanes) averaged 527 vehicles per hour (LoS C).

These volumes indicate that Shirley Road is operating at around 50% capacity during peak periods.

Alexander Street

AM - 664 vehicles per hour, two-way (302 northbound and 362 southbound) The northbound carriageway (2 lanes) averaged 151 vehicles per lane (LoS A). The southbound carriageway (2 lanes) averaged 181 vehicles per lane (LoS A).

These volumes indicate that Alexander Street is operating at 20 to 30% capacity during peak periods.
These hourly volumes indicate that the road network surrounding the site is operating at a high level of service, which shows that the network has ample capacity to cater for additional traffic that will be generated by developments in the area.

2.5 Public Transport, Pedestrians

The site is located close to several bus routes providing the services along the Pacific Highway, Falcon Street, Shirley Road and Alexander Street to a wide range of destinations including King Street Wharf, North Sydney, Chatswood, Lane Cove, McMahons Point, Bondi, Epping, Mascot, Gore Hill, Ryde, Riverview, Denistone East, Manly, Balmoral Beach, Spit Junction and Kingsford.

Bus stops are located within 100 metres of the site in the Pacific Highway, Falcon Street, Shirley Road and

Alexander Street.

St Leonards Station is located 1 km to the north-west along the Pacific Highway and the new Crows Nest Metro Station will be located on the eastern side of the Pacific Highway generally bounded by Oxley Street, Clark Lane and Hume Street. Station access will be via the corner of Clark Street and Hume Streetand at the corner of Pacific Highway and Oxley Street. The closest station entrance will be 240 metres from the site.

Sydney Metro will create connections between Sydney's north-west, west and south-west regions to Sydney's CBD and is scheduled for completion by 2024.

The site is therefore well-serviced by public transport offering a convenient alternative to the use ofprivate vehicles for access to and from the site.

Pedestrian access to and from the site is facilitated by the existing network of pedestrian footways connecting the site to the nearby supermarket and a variety of cafes, restaurants and speciality shops located along both sides of Willoughby Road. Details of bicycle paths are also available and shown attached in Appendix C.

The locations of public transport infrastructure in the vicinity of the site are shown below in Figure 5. Additional details are attached at Appendix A (Bus Route Map) and Appendix B (Sydney Train Map).

Figure 4: Bus stops close to the site. (Source: Google Maps 2020)

3 Proposed Development

3.1 The Development

The proposal is for a mixed-use development consisting of 129 residential apartments and $8,002 \mathrm{~m}^{2}$ of nonresidential space ($1,849 \mathrm{~m}^{2}$ retail and $6,153 \mathrm{~m}^{2}$ commercial). It is proposed to provide 385 parking spaces in 7 separate basement levels as well as storage for 404 bicycles and parking spaces for 22 motorcycles.

The proposed unit mix is provided below:

1-bedroom 32 Apartments
2-bedroom 79 Apartments
3-bedroom 18 Apartments
Total $=\quad 129$ Apartments

3.2 Access and Car Park

Vehicular access to and from the site will be via a single 9 metre wide driveway off Alexander Street that will be utilised by residents, visitors and service vehicles (deliveries and waste collection).

The entry/exit driveway, car parking areas and waste loading bay will be designed to comply with AS/NZS 2890.1-2004 Parking Facilities - Off Street Car Parking, AS 2890.2-2002 Parking Facilities - Off Street Commercial Vehicle Facilities, AS/NZS 2890.6-2009 off-street parking for people with disabilities and Council's DCP requirements.

The proposed driveway location complies with Figure 3.3 - Minimum Sight Distance for Pedestrian Safety AS/NZS 2890.1 and the proposed driveway gradients comply with AS/NZS 2890.1.

Pedestrian access to the residential lobby will be via Alexander Street and access to the commercial lobby will be via Falcon Street. The retail and community spaces will be on the ground floor with accessfrom Pacific Highway, Falcon Street and Alexander Street via through site links.

Swept path plans will be provided at DA stage demonstrating the circulation of vehicles within the basement carpark levels.

3.3 Service Vehicles and loading

Waste collection is proposed to be conducted by Council waste vehicles utilizing the collection area which is located at the north-western corner of Basement 01 . Waste and recycling bins will be stored in separate designated residential, retail and commercial refuse areas. Vehicle manoeuvring into and outof this area will facilitated by a turntable that will allow vehicles to enter and exit the site in a forward direction.

Swept path plans will be provided at DA stage demonstrating forward ingress and egress of the Council waste vehicle.

3.4 Parking Provision and Requirements

The parking provision for the residential apartments and the non-residential developments will beprovided in accordance with the requirements of North Sydney Council's Development Control Plan 2013.

Car Parking

For residential flat buildings (B4 Mixed-Use) the parking requirements are:

- Studio/ 1 bedroom - 0.5 spaces per dwelling;
- or more bedrooms - 1 space per dwelling;
- Food and drink premises - 1 space per $50 \mathrm{~m}^{2}$;
- All other commercial/retail uses -1 space per $60 \mathrm{~m}^{2}$.

Table 1: Car parking requirements and provision

Land Use	North Sydney DCP 2013	Proposed Parking Provision
Residential:	DCP Rates	247 spaces

The proposed 247 car parking spaces are in accordance with the DCP requirements.

Proximity to public transport

As discussed in Section 2.5 of this report, the site is well-serviced by public transport offering a convenient alternative to the use of private vehicles for access to and from the site.

The site is located close to several bus routes providing services along the Pacific Highway, Falcon Street, Shirley Road and Alexander Street to a wide range of destinations across the Sydney metropolitan area, bus stops are located within 100 metres of the site in the Pacific Highway, Falcon Street, Shirley Road and Alexander Street and St Leonards Station is located 1 km to the north-west along the Pacific Highway. In addition, the new Crows Nest Metro Station will be located on the eastern side of the Pacific Highway with the closest station entrance 400 metres from the site.

Sydney Metro will create connections between Sydney's north-west, west and south-west regions to Sydney's CBD and is scheduled for completion by 2024.

The site will therefore meet the requirements of transit-oriented developments which usually have the following characteristics;

- A rapid and frequent transit service;
- High accessibility to the transit station;
- A mix of residential, retail, commercial and community uses;
- High quality public spaces and streets, which are pedestrian and cyclist friendly
- Medium to high density development within 800 metres of the transit station; and
- Reduced rates of private car parking

Car Share

The provision of 12 car share spaces as part of the non-residential retail and commercial areas will also assist in meeting the travel needs of the residents and the staff and the customers of the retail and commercial areas and contribute to reducing the demand for individually held parking spaces. The availability of the car sharefacility will provide a viable alternative to the purchase of a vehicle or an additional vehicle, particularly in situations where a vehicle is only required on an intermittent basis.

Accessible Parking

The North Sydney DCP requires accessible parking at the rate of 1 space per 10 residential parking spaces provided. The proposed development will therefore require 12 of the residential spaces to be accessible parking spaces.

Bicycle Parking

Secure bicycle parking for residents will be provided within the each of the basement carparks from Basements 02 to 07 in separate bicycle storage areas. Bicycle racks will be provided in Basements 01 and 02 for the use of visitors to the various land uses within the site (residential, commercial, retail and community). These will service the bicycle parking needs of both residents and visitors.

Table 2: Bicycle parking requirements and provision

Land Use	North Sydney DCP 2013	Proposed Parking Provision
Residential (129 units) Residential visitors Commercial $\left(6,153 m^{2}\right)$	$\begin{aligned} & 1 \text { resident space per unit }=129 \text { spaces } \\ & 1 \text { visitor space per } 10 \text { units } \times 129=13 \text { spaces } \\ & 1 \text { space per } 150 \mathrm{~m}^{2} \text { for staff }=6,153 / 150=41 \text { spaces } \\ & 1 \text { space per } 400 \mathrm{~m}^{2} \text { for visitors }=6,153 / 400=16 \\ & \text { spaces } 1 \text { space per } 25 \mathrm{~m}^{2} \text { for staff }=1,849 / 25=74 \end{aligned}$	Total $=292$ spaces
Retail (1,849m²)	spaces 1 space per $100 \mathrm{~m}^{2}$ for visitors $=1,849 / 100=19$ spaces	

The proposed 292 bicycle spaces are in accordance with the DCP requirements.

Motorcycle Parking

Table 3: Motorcycle parking requirements and provision

Land use	North Sydney DCP 2013	Proposed Parking
Provision		

The proposed 13 motorcycle parking spaces are in accordance with the DCP requirements.

4 Traffic Assessment

4.1 Trip Generation

In accordance with the RMS "Guide to Traffic Generating Developments" and Technical Direction TDT 2013/04a "Guide to Traffic Generating Developments, Updated Traffic Surveys" the following trip generation rates have been adopted for this assessment:

Table 4: Trip generation rates

Use	AM Trip Rates	PM Trip Rates
Residential	0.19 trips per units	0.15 trips per units
Retail	1.94 per $100 \mathrm{~m}^{2}$	2.7 trips per $100 \mathrm{~m}^{2}$
Commercial	1.6 trips per $100 \mathrm{~m}^{2}$	1.2 trips per $100 \mathrm{~m}^{2}$

4.1.1 Existing Development

The existing developments on the site consist of a mix of retail and commercial sites covering an area of approximately $3,200 \mathrm{~m}^{2}$.

Retail developments (assume $1,200 \mathrm{~m}^{2}$)
AM peak (1 hour) vehicle trips $=1,200 / 100 \times 1.94=23$ trips
PM peak (1 hour) vehicle trips $=1,200 / 100 \times 2.7=32$ trips
Commercial developments $\left(1,600 \mathrm{~m}^{2}\right)$
AM peak (1 hour) vehicle trips $=2,000 / 100 \times 1.6=32$ trips
PM peak (1 hour) vehicle trips $=2,000 / 100 \times 1.2=24$ trips
Total trip generation of the existing developments
AM peak (1 hour) vehicle trips $=55$ trips
PM peak (1 hour) vehicle trips $=56$ trips

4.1.2 Proposed Development:

Adopting the same trip generation rates as for the existing development, the proposed developmentwould generate the following peak hour trips:

Table 5: $A M$ and $P M$ Trips

Land Use	Yield	AM Peak Hour Trip Rate	AM Peak Hour Trips	PM Peak Hour Trip Rate	PM Peak Hour Trips
Residential	129 units	0.19 trips $/$ unit	25	0.15 trips $/$ unit	20
Retail	$1,849 \mathrm{~m}^{2}$	1.94 trips $/ 100 \mathrm{~m}^{2}$	36	2.7 trips $/ 100 \mathrm{~m}^{2}$	50
Commercial	$6,153 \mathrm{~m}^{2}$	1.6 trips $/ 100 \mathrm{~m}^{2}$	99	1.2 trips $/ 100 \mathrm{~m}^{2}$	74
Total	-		$\mathbf{1 6 0}$		$\mathbf{1 4 4}$

The additional trips that would be generated by the development compared to the existing situation are calculated as:

AM peak hour trips $=160-55=105$ trips
PM peak hour trips $=144-56=88$ trips

Table 6: Calculation of additional trips

Land Use	Existing AM Peak Hour Trips	Proposed AM Peak Hour Trips	Difference	Existing PM Peak Hour Trips	Proposed PM Peak Hour Trips	Difference
Residential	-	25	25	-	20	20
Retail	23	36	13	32	50	18
Commercial	32	99	67	24	74	50
Total	$\mathbf{5 5}$	$\mathbf{1 6 0}$	$\mathbf{1 0 5}$	$\mathbf{5 6}$	$\mathbf{1 4 4}$	$\mathbf{8 8}$

4.2 Trip Distribution and Assignment

The additional trips that are expected to be generated by the proposed development consist of both inbound and outbound trips.

For residential developments it is generally assumed that in the AM peak 80% of trips will be outboundand 20% inbound with the reverse situation during the PM peak.

For commercial developments the distribution of trips is assumed to be 80% inbound and 20% outboundin the AM peak with the reverse situation during the PM peak.

For the retail developments and the community facility the distribution of trips is assumed to be 50% inbound and 50% outbound in the AM and PM peaks.

On this basis, the proposed development would generate the following additional trips to the roadnetwork:
AM Peak (105 trips):

- Outbound - 39 trips
- Residential-20
- Retail-6
- Commercial - 13
- Inbound - 66 trips
- Residential - 5
- Retail-7
- Commercial-54

PM Peak (88 trips):

- Outbound - 53 trips
- Residential-4
- Retail-9
- Commercial-40
- Inbound - 35 trips
- Residential - 16
- Retail-9
- Commercial - 10

These trips will be assigned to the network based on journey to work data for the North Sydney LGAprovided in the 2016 census which indicated that trips should be assigned as 15% north, 65% south, 5% east and 15% west as derived from Figure 6 below.

Employment location of resident workers by LGA		\checkmark	reset 3
North Sydney Council area	2016		
LGA	$\stackrel{\rightharpoonup}{*}$	Number $\stackrel{\text { * }}{ }$	\% \uparrow
Sydney (C)		16,098	39.9
North Sydney (A)		10,112	25.0
Willoughby (C)		2,907	7.2
Ryde (C)		1,808	4.5
Northern Beaches (A)		1,355	3.4
Mosman (A)		785	1.9
No Fixed Address (NSW)		740	1.8
Parramatta (C)		724	1.8
Lane Cove (A)		699	1.7
Ku-ring-gai (A)		548	1.4
Inner West (A)		501	1.2
Botany Bay (C)		438	1.1
Randwick (C)		388	1.0
The Hills Shire (A)		370	0.9
Canada Bay (A)		282	0.7
Woollahra (A)		282	0.7
Hornsby (A)		277	0.7
Waverley (A)		264	0.7
Blacktown (C)		185	0.5
Canterbury-Bankstown (A)		159	0.4
Show me more!			

Source: Australian Bureau of Statistics, Census of Population and Housing 2016. Compiled and presented in profile.id by id, the population experts. Excludes employment locations with fewer than 10 people.

Figure 6: Employment Location of resident Workers for North Sydney LGA

4.3 Impact of Generated Traffic

Intersection performance has been assessed using the SIDRA modelling software which uses the level of service (delay) model adopted by Transport for NSW to assess intersection performance. Average delay is used to determine the level of service (LOS), which ranges from ' A ' which is excellent service to ' F ', with a LOS of ' D ' being the minimum ideal performance.

The intersections outlined above have been assessed as a network for the existing and 10 -year growth scenarios for AM and PM peak periods. A growth rate of 0.5% per annum has been applied to the surveyed intersections to obtain the 10-year growth volumes, based on average historical growth ratesrecorded at Transport for NSW counting stations at Willoughby Road (Station ID: 33098) and River Road(Station ID: 32039) and an assumed reduction in the growth of traffic volumes in the area as a result of the Sydney Metro.

The differences in intersection performance between the existing and 10 year growth scenarios are summarised in the tables below. Note that the SIDRA analysis undertaken was based on the previous
proposal which consisted of 233 residential units whereas the current proposal is for only 129 units. The retail and commercial GFAs remain generally the same in both proposals. Therefore, the previous SIDRA analysis undertaken is considered to be conservative. SIDRA output reports are available in Appendix \mathbf{E}.

Table 7: Pacific Highway / Falcon Street / Shirley Road SIDRA Modelling Summary

Pacific Highway / Falcon Street / Shirley Road		Existing Scenario		10-year growth scenario	
		Existing Conditions	Post Development Condition	Existing Condifions	Post Development Condition
AM	Delay (s)	35.4	35.0	89.2	99.7
	LOS	C	C	F	F
PM	Delay (s)	41.9	43.7	57.8	67.3
	LOS	C	D	E	E

Table 8: Pacific Highway / Alexander Street SIDRA Modelling Summary

Pacific Highway Alexander Stree		Existing Scenario		10-year growth scenario	
		Existing Conditions	Post Development Condition	Existing Condifions	Post Development Condition
AM	Delay (s)	12.5	12.2	19.6	20.7
	LOS	A	A	B	B
PM	Delay (s)	16.6	17.4	22.6	30.4
	LOS	B	B	B	C

Table 9: Falcon Street / Alexander Street SIDRA Modelling Summary

Falcon Street / Alexander Stree		Existing Scenario		10-year growth scenario	
		Existing Conditions	Post Development Condition	Existing Condifions	Post Development Condition
AM	Delay (s)	16.3	16.0	48.6	48.3
	LOS	B	B	D	D
PM	Delay (s)	18.1	22.0	22.7	34.1
	LOS	B	B	B	C

As shown in the tables above, the existing intersections generally operate at high levels of service with acceptable average delays and will continue to do so with the additional traffic that will be generated by the proposed development.

In the future scenarios, the additional development traffic is expected to have only a minor impact on the delays experienced by motorists at the Pacific Highway / Alexander Street and the Falcon Street / Alexander street intersections that will continue to operate at high levels of service.

The Pacific Highway / Falcon Street / Shirley Road intersection, however, is expected to operate at low levels of service (E and F) in the future scenarios due primarily to the background growth in traffic through this intersection. The development traffic will only marginally impact on the intersection performance, increasing average delays by only 10 seconds.

In summary, the traffic from the subject development will not have any significant impact on the efficiency of the surrounding road network and should not be responsible for any network improvements.

Any future background growth should be addressed through changes in travel patterns and transport modes and/or intervention by the road authorities by upgrading infrastructure and /or introducing travel demand measures. Consequently, the development can be supported based on traffic grounds.

5 Conclusion

This Traffic Impact and Parking Impact Assessment Report has been prepared in accordance with the requirements of the North Sydney DCP 2013 and the NSW Government's "Guide to Traffic Generating Developments" to support a Planning Proposal for a mixed-use development consisting of residential apartments, retail space and community space at the site knownas the Five Ways Triangle on the Pacific Highway at Crows Nest.

The proposal is for a mixed-use development consisting of 129 residential apartments, commercial space $\left(6,153 \mathrm{~m}^{2}\right)$ and retail space ($1,849 \mathrm{~m}^{2}$). It is proposed to provide 247 parking spaces in 5 separate basement levels as well as storage for 292 bicycles and parking spaces for 13 motorcycles.

The proposed number of car, bicycle and motorcycle parking spaces are in accordance with the North Sydney DCP 2013.

The site is well serviced by public transport offering a convenient alternative to the use of private vehicles for access to and from the site, providing opportunities for reducing the parking requirements for the proposal.

Vehicular access to and from the site will be via a single 9 metre wide driveway off Alexander Street that will be utilised by residents, visitors and service vehicles (deliveries and waste collection). Pedestrian access to the residential lobby will be via Alexander Street and access to the commercial lobby will be via Falcon Street. The retail and community spaces will be on the ground floor with access from Pacific Highway, Falcon Street and Alexander Street via through site links.

The proposed entry/exit driveway, car parking areas and waste loading facilities meet the requirements of the North Sydney DCP 2013 and will be designedin accordance with the requirements AS2890.1 - Off Street Car Parking, AS2890.2-2002 Parking Facilities - off Street Commercial Vehicle Facilities and AS2896.6 - Off Street Car Parking for People with Disabilities.

According to the SIDRA analysis undertaken, the additional traffic that will be generated by the development is not expected to have any significantimpact on the performance of the surrounding intersections, or the local road network.

From the above assessment, the subject site is considered suitable for the proposed development in relation to traffic impact, access, parking and safety considerations.

Appendix A

Bus Route Maps

(B)(B)

State Transit
Northern Beaches \& Lower North Shore

Appendix B
Sydney Train Map

Sydney rail network

(M) Metro (1) Trains

Sydney metro and train lines

	Metro North West Line Chatswood Tallawong		North Shore \& Western Line North Shore Western Richmond		Inner West \& Leppington Line Inner West Leppington City	13	Bankstown Line Liverpool Lidcombe City	14	Eastern Suburbs \& Illawarra Line Eastern Suburbs Illawarra Cronulla
15	Cumberland Line Leppington Richmond	16	Carlingford Line Carlingford Clyde	77	Olympic Park Line Olympic Park Lidcombe	18	Airport \& South Line Airport South City	19	Northern Line Northern Gordon

Appendix C

Cycleway Network Map

Appendix D

Swept Path Analysis

No	Date	AMENOM		SToner	Client		FIVE WAYS TRIANGLE CROWS NEST		aAJ		Pla	Plan No.
A	120332020		BARKE					Drawn:	AAS		Horiz	CC200015TR01
B	${ }^{2900420202020}$	SECONOO ISUUE THRISSUE	STEWART	Hunter		DEICORP		Checked:	as		X ${ }_{\text {esect }}$	File Ref.
D	30042020	$\frac{\text { FOURTHISUE }}{\text { FIFTH SSUE }}$	Ser soumions				ONUD FLOOR LEVEL LOADING DOCK ACCESS - 8.8M MRV			Datum:	A.H.D.	CC200015D01E SHEET 1 OF 4 SHEETS

A1

ω^{5} MAL EEFORE

No	DATE	A AENOMENT	BARKER	Simoteme	ciont	DEICORP	FIVE WAYS TRIANGLE, CROWS NEST	Designed: Drawn: Checked	$\begin{aligned} & \hline \text { AAN } \\ & \text { ANA } \\ & \text { ANA } \end{aligned}$			${ }^{\text {Pann }}$ Coo 200015 TR03	
B	${ }^{20942020}$	Scoovo ssuE	RYAN	centracois									
c	30042920	THRROLSSUE	STEWART	Pameme								Fil Ref.	
D			utows	2mamemmem			basement 1 PAssenger vehile circulation - b99 /B85			Daum:	A.f.D		E

Appendix E
 SIDRA Results

FALCON / ALEXANDER - EXISTING AM
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time $=90$ seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov Turn ID	Demand Flows Arrival Flows Total HV Total HV				Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Prop. Vehicles Distance Queued			Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: ALEXANDER STREET													
1 L2	39	5.4	39	5.4	0.487	41.2	LOS C	3.5	26.3	0.94	0.78	0.94	8.8
2 T1	279	9.4	279	9.4	0.487	35.4	LOS C	4.3	32.8	0.93	0.76	0.93	20.3
3 R 2	2	0.0	2	0.0	0.487	40.8	LOS C	4.3	32.8	0.92	0.76	0.92	20.0
Approach	320	8.9	320	8.9	0.487	36.1	LOS C	4.3	32.8	0.93	0.77	0.93	19.1
East: FALCON STREET													
4 L2	311	5.8	311	5.8	0.761	16.1	LOS B	11.1	82.7	0.71	0.76	0.78	29.7
5 T1	794	8.6	794	8.6	0.761	13.0	LOS A	11.1	82.7	0.72	0.73	0.79	28.8
Approach	1104	7.8	1104	7.8	0.761	13.9	LOS A	11.1	82.7	0.72	0.74	0.79	29.0
North: ALEXANDER STREET													
7 L2	14	15.4	14	15.4	0.116	37.9	LOS C	0.9	7.0	0.85	0.67	0.85	24.0
8 T1	71	9.0	71	9.0	0.116	32.2	LOS C	1.0	7.3	0.85	0.65	0.85	17.0
Approach	84	10.0	84	10.0	0.116	33.1	LOS C	1.0	7.3	0.85	0.65	0.85	18.5
West: FALCON STREET													
10 L2	81	5.2	81	5.2	0.369	13.4	LOS A	6.4	47.6	0.57	0.55	0.57	36.5
11 T1	824	7.0	824	7.0	0.369	10.4	LOS A	8.6	64.1	0.68	0.63	0.68	37.3
Approach	905	6.9	905	6.9	0.369	10.7	LOS A	8.6	64.1	0.67	0.62	0.67	37.3
All Vehicles	2414	7.7	2414	7.7	0.761	16.3	LOS B	11.1	82.7	0.73	0.69	0.77	29.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{gathered} \mathrm{Mov} \\ \mathrm{ID} \end{gathered}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	40	39.3	LOS D	0.1	0.1	0.93	0.93
P2	East Full Crossing	57	39.3	LOS D	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	39.3	LOS D	0.1	0.1	0.94	0.94
P4	West Full Crossing	52	39.3	LOS D	0.1	0.1	0.94	0.94
All Pedestrians		201	39.3	LOS D			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

FALCON / ALEXANDER - EXISTING PM
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov Turn ID	Demand Flows Arrival Flows Total HV Total HV				Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Prop. Vehicles Distance Queued			Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: ALEXANDER STREET													
1 L2	18	23.5	18	23.5	0.796	61.5	LOS E	5.1	38.6	1.00	0.87	1.13	6.1
2 T1	317	7.3	317	7.3	0.796	55.7	LOS D	5.7	42.4	1.00	0.87	1.12	14.8
3 R 2	2	0.0	2	0.0	0.796	61.0	LOS E	5.7	42.4	1.00	0.87	1.12	14.6
Approach	337	8.1	337	8.1	0.796	56.1	LOS D	5.7	42.4	1.00	0.87	1.12	14.4
East: FALCON STREET													
4 L2	353	2.4	353	2.4	0.789	14.6	LOS B	14.0	100.1	0.65	0.71	0.67	31.7
5 T1	975	2.2	975	2.2	0.789	10.8	LOS A	14.0	100.1	0.65	0.68	0.69	31.4
Approach	1327	2.2	1327	2.2	0.789	11.8	LOS A	14.0	100.1	0.65	0.69	0.69	31.4
North: ALEXANDER STREET													
7 L2	16	6.7	16	6.7	0.196	49.7	LOS D	1.2	9.0	0.94	0.71	0.94	20.4
8 T1	73	5.8	73	5.8	0.196	44.0	LOS D	1.2	9.1	0.94	0.70	0.94	13.5
Approach	88	6.0	88	6.0	0.196	45.0	LOS D	1.2	9.1	0.94	0.71	0.94	15.0
West: FALCON STREET													
10 L2	78	1.4	78	1.4	0.270	11.8	LOS A	6.0	42.6	0.56	0.55	0.56	39.1
11 T1	701	2.0	701	2.0	0.270	9.2	LOS A	8.7	62.0	0.71	0.65	0.71	39.0
Approach	779	1.9	779	1.9	0.270	9.4	LOS A	8.7	62.0	0.69	0.64	0.69	39.0
All Vehicles	2532	3.0	2532	3.0	0.796	18.1	LOS B	14.0	100.1	0.72	0.70	0.75	27.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{gathered} \text { Mov } \\ \hline \text { ID } \end{gathered}$	Description	Demand Flow ped $/ \mathrm{h}$	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	11	44.2	LOS E	0.0	0.0	0.94	0.94
P2	East Full Crossing	13	44.2	LOS E	0.0	0.0	0.94	0.94
P3	North Full Crossing	14	44.2	LOS E	0.0	0.0	0.94	0.94
P4	West Full Crossing	16	44.2	LOS E	0.0	0.0	0.94	0.94
All Pedestrians		53	44.2	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PACIFIC / ALEXANDER - EXISTING AM
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 90 seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov Turn ID	Demand Flows Arrival Flows Total HV Total HV				Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Vehicles Distance		Prop. Queued	Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: PACIFIC HIGHWAY													
2 T1	992	9.6	992	9.6	0.332	2.6	LOS A	3.6	27.2	0.29	0.26	0.29	45.2
3a R1	300	9.5	300	9.5	0.552	33.2	LOS C	6.9	51.9	0.89	0.81	0.89	12.2
Approach	1292	9.5	1292	9.5	0.552	9.7	LOS A	6.9	51.9	0.43	0.39	0.43	27.2
NorthEast: ALEXANDER STREET													
24a L1	321	6.9	321	6.9	0.406	27.6	LOS B	7.2	53.5	0.89	0.82	0.89	19.0
26b R3	60	3.5	60	3.5	0.566	54.6	LOS D	1.7	12.5	1.00	0.77	1.05	6.6
Approach	381	6.4	381	6.4	0.566	31.8	LOS C	7.2	53.5	0.91	0.81	0.92	16.4
North: PACIFIC HIGHWAY													
7b L3	18	0.0	18	0.0	0.566	11.3	LOS A	3.1	23.9	0.28	0.26	0.28	36.6
8 T1	1324	12.0	1324	12.0	0.566	9.8	LOS A	8.9	68.7	0.44	0.39	0.44	36.3
Approach	1342	11.8	1342	11.8	0.566	9.8	LOS A	8.9	68.7	0.44	0.39	0.44	36.3
All Vehicles	3015	10.2	3015	10.2	0.566	12.5	LOS A	8.9	68.7	0.50	0.44	0.50	28.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov	Description	Demand Flow/ ID	Average Delay sed	Level of Service	Average Back of Queue Pedestrian ped	Prop. Distance Queued	Effective Stop Rate
P6	NorthEast Full Crossing	39	39.3	LOS D	0.1	0.1	0.93
P3	North Full Crossing	18	39.2	LOS D	0.0	0.0	0.93
All Pedestrians	57	39.3	LOS D		0.93		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Processed: Monday, 11 May 2020 5:57:23 PM
Project: C:IUsersIrobert|DocumentsICrows Nest Trianglel[CC200015] EXISTING.sip8

PACIFIC / ALEXANDER - EXISTING PM
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov Turn ID	Demand Flows Arrival Flows				Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Vehicles Distance		Prop. Queued	Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: PACIFIC HIGHWAY													
2 T1	1173	6.6	1173	6.6	0.693	7.8	LOS A	9.5	70.3	0.55	0.50	0.55	30.1
3a R1	309	8.8	309	8.8	0.515	33.6	LOS C	7.5	56.6	0.86	0.80	0.86	12.0
Approach	1482	7.1	1482	7.1	0.693	13.2	LOS A	9.5	70.3	0.61	0.56	0.61	22.6
NorthEast: ALEXANDER STREET													
24a L1	303	4.2	303	4.2	0.701	47.0	LOS D	6.7	48.5	0.98	0.85	1.05	13.1
26b R3	122	0.0	122	0.0	0.701	44.5	LOS D	5.7	40.6	0.94	0.83	0.99	7.8
Approach	425	3.0	425	3.0	0.701	46.3	LOS D	6.7	48.5	0.97	0.85	1.03	11.8
North: PACIFIC HIGHWAY													
7b L3	25	0.0	25	0.0	0.500	11.4	LOS A	1.8	13.3	0.21	0.23	0.21	35.5
8 T1	884	5.5	884	5.5	0.500	8.1	LOS A	4.7	34.2	0.32	0.28	0.32	38.8
Approach	909	5.3	909	5.3	0.500	8.2	LOS A	4.7	34.2	0.31	0.28	0.31	38.7
All Vehicles	2817	5.9	2817	5.9	0.701	16.6	LOS B	9.5	70.3	0.57	0.51	0.58	23.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Queue Pedestrian ped	Prop. Distance Queued	Effective Stop Rate	
P6	NorthEast Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	14	44.2	LOS E	0.0	0.0	0.94	0.94
All Pedestrians	66	44.3	LOS E		0.9	0.94		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Processed: Monday, 11 May 2020 6:01:50 PM
Project: C:IUsersIrobert|DocumentsICrows Nest Trianglel[CC200015] EXISTING.sip8

PACIFIC / FALCON / SHIRLEY - EXISTING AM
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time $=90$ seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	Demand Flows Total veh/h		Arrival Total veh/h	Flows HV \%	Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Prop. Vehicles Distance Queued\qquad veh m			Effective Aver. No.Average Stop Cycles Speed Rate		
South: PACIFIC HIGHWAY													
1 L2	187	11.2	187	11.2	0.177	14.2	LOS A	2.2	17.1	0.48	0.70	0.48	32.4
2 T1	712	9.5	712	9.5	0.784	32.7	LOS C	9.1	68.7	0.94	0.85	1.00	22.9
Approach	899	9.8	899	9.8	0.784	28.8	LOS C	9.1	68.7	0.84	0.82	0.89	24.4
East: FALCON STREET													
4 L2	14	38.5	14	38.5	0.869	36.2	LOS C	10.8	80.0	0.97	0.94	1.10	9.6
$5 \quad$ T1	297	4.3	297	4.3	0.869	31.0	LOS C	10.8	80.0	0.97	0.94	1.10	21.5
6 R2	523	10.3	523	10.3	0.869	34.2	LOS C	10.8	80.0	0.95	0.92	1.09	20.0
Approach	834	8.6	834	8.6	0.869	33.1	LOS C	10.8	80.0	0.95	0.92	1.10	20.4
North: PACIFIC HIGHWAY													
7 L2	414	9.7	414	9.7	0.501	17.8	LOS B	6.6	50.2	0.64	0.77	0.64	25.3
8 T1	824	4.6	824	4.6	0.881	46.1	LOS D	12.7	92.7	1.00	1.06	1.29	13.2
Approach	1238	6.3	1238	6.3	0.881	36.7	LOS C	12.7	92.7	0.88	0.96	1.07	15.7
West: SHIRLEY ROAD													
10 L2	46	13.6	46	13.6	0.853	47.4	LOS D	11.6	85.0	1.00	1.03	1.25	21.5
11 T1	492	4.5	492	4.5	0.853	42.1	LOS C	11.6	85.0	1.00	1.03	1.25	14.1
12 R2	201	1.6	201	1.6	0.853	48.4	LOS D	10.7	76.9	1.00	1.03	1.27	13.4
Approach	739	4.3	739	4.3	0.853	44.1	LOS D	11.6	85.0	1.00	1.03	1.26	14.5
All Vehicles	3709	7.3	3709	7.3	0.881	35.4	LOS C	12.7	92.7	0.91	0.93	1.07	18.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian \qquad	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	124	39.4	LOS D	0.3	0.3	0.94	0.94
P2	East Full Crossing	39	39.3	LOS D	0.1	0.1	0.93	0.93
P3	North Full Crossing	64	39.3	LOS D	0.2	0.2	0.94	0.94
P4	West Full Crossing	95	39.4	LOS D	0.2	0.2	0.94	0.94
All Pedestrians		322	39.4	LOS D			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.

PACIFIC / FALCON / SHIRLEY - EXISTING PM
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	166	44.5	LOS E	0.4	0.4	0.95	0.95
P2	East Full Crossing	48	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	78	44.3	LOS E	0.2	0.2	0.94	0.94
P4	West Full Crossing	143	44.4	LOS E	0.4	0.4	0.95	0.95
All Pedestrians		436	44.4	LOS E			0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.

FALCON / ALEXANDER - EXISTING AM + DEVT
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time $=80$ seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov Turn ID	Demand Flows Arrival Flows Total HV Total HV				Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Prop. Vehicles Distance Queued			Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: ALEXANDER STREET													
1 L2	62	3.4	62	3.4	0.530	30.7	LOS C	3.4	25.1	0.84	0.73	0.84	11.4
2 T1	279	9.4	279	9.4	0.530	21.8	LOS B	3.6	26.9	0.77	0.67	0.77	26.5
3 R 2	43	0.0	43	0.0	0.530	25.1	LOS B	3.6	26.9	0.73	0.64	0.73	27.0
Approach	384	7.4	384	7.4	0.530	23.6	LOS B	3.6	26.9	0.78	0.68	0.78	24.5
East: FALCON STREET													
4 L2	357	5.0	357	5.0	0.779	18.4	LOS B	11.3	83.4	0.77	0.82	0.88	26.9
5 T1	794	8.6	794	8.6	0.779	15.6	LOS B	11.3	83.4	0.79	0.81	0.89	26.3
Approach	1151	7.5	1151	7.5	0.779	16.5	LOS B	11.3	83.4	0.78	0.81	0.89	26.5
North: ALEXANDER STREET													
7 L2	14	15.4	14	15.4	0.097	31.6	LOS C	0.8	6.0	0.81	0.65	0.81	26.7
8 T1	71	9.0	71	9.0	0.097	25.9	LOS B	0.8	6.1	0.81	0.62	0.81	19.7
Approach	84	10.0	84	10.0	0.097	26.8	LOS B	0.8	6.1	0.81	0.63	0.81	21.2
West: FALCON STREET													
10 L2	81	5.2	81	5.2	0.402	14.2	LOS A	6.1	45.5	0.61	0.58	0.61	35.5
11 T1	824	7.0	824	7.0	0.402	11.0	LOS A	7.8	58.1	0.71	0.64	0.71	36.6
Approach	905	6.9	905	6.9	0.402	11.3	LOS A	7.8	58.1	0.70	0.64	0.70	36.5
All Vehicles	2524	7.3	2524	7.3	0.779	16.0	LOS B	11.3	83.4	0.75	0.72	0.80	29.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{gathered} \text { Mov } \\ \hline \text { ID } \end{gathered}$	Description	Demand Flow ped $/ \mathrm{h}$	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	40	34.3	LOS D	0.1	0.1	0.93	0.93
P2	East Full Crossing	57	34.3	LOS D	0.1	0.1	0.93	0.93
P3	North Full Crossing	53	34.3	LOS D	0.1	0.1	0.93	0.93
P4	West Full Crossing	52	34.3	LOS D	0.1	0.1	0.93	0.93
All Pedestrians		201	34.3	LOS D			0.93	0.93

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

FALCON / ALEXANDER - EXISTING PM + DEVT
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov Turn ID	Demand Total veh/h	Flows HV \%	Arrival Total veh/h	Flows HV \%	Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No.A Cycles	verage peed km/h
South: ALEXANDER STREET													
1 L2	33	12.9	33	12.9	0.816	61.9	LOS E	5.8	43.4	1.00	0.89	1.14	6.0
$2 \quad \mathrm{~T} 1$	317	7.3	317	7.3	0.816	56.1	LOS D	6.4	47.3	1.00	0.89	1.14	14.6
3 R2	28	0.0	28	0.0	0.816	61.4	LOS E	6.4	47.3	1.00	0.89	1.13	14.4
Approach	378	7.2	378	7.2	0.816	57.0	LOS E	6.4	47.3	1.00	0.89	1.14	14.0
East: FALCON STREET													
4 L2	404	2.1	404	2.1	0.829	19.9	LOS B	18.0	128.3	0.73	0.80	0.79	25.9
$5 \quad$ T1	975	2.2	975	2.2	0.829	16.9	LOS B	18.0	128.3	0.73	0.78	0.82	25.1
Approach	1379	2.1	1379	2.1	0.829	17.8	LOS B	18.0	128.3	0.73	0.79	0.81	25.3
North: ALEXANDER STREET													
7 L2	16	6.7	16	6.7	0.168	47.4	LOS D	1.2	8.7	0.92	0.70	0.92	21.0
8 T1	73	5.8	73	5.8	0.168	41.7	LOS C	1.2	8.8	0.92	0.69	0.92	14.1
Approach	88	6.0	88	6.0	0.168	42.7	LOS D	1.2	8.8	0.92	0.69	0.92	15.6
West: FALCON STREET													
10 L2	78	1.4	78	1.4	0.277	12.5	LOS A	6.2	43.8	0.58	0.56	0.58	38.1
11 T1	701	2.0	701	2.0	0.277	9.9	LOS A	8.6	61.4	0.71	0.65	0.71	38.0
Approach	779	1.9	779	1.9	0.277	10.2	LOS A	8.6	61.4	0.70	0.64	0.70	38.0
All Vehicles	2624	2.9	2624	2.9	0.829	22.0	LOS B	18.0	128.3	0.77	0.75	0.83	24.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance \qquad	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	11	44.2	LOS E	0.0	0.0	0.94	0.94
P2	East Full Crossing	13	44.2	LOS E	0.0	0.0	0.94	0.94
P3	North Full Crossing	14	44.2	LOS E	0.0	0.0	0.94	0.94
P4	West Full Crossing	16	44.2	LOS E	0.0	0.0	0.94	0.94
All Pedestrians		53	44.2	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

䗆 Network: N101 [FIVE WAYS Existing AM + DEVELOPMENT]

PACIFIC / ALEXANDER - EXISTING AM + DEVT
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time $=80$ seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov Turn ID	Demand Flows Arrival Flows				Deg. Satn v/c	Average Delay	Level of Service	Aver. Back of Queue Vehicles Distance		Prop. Queued	Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: PACIFIC HIGHWAY													
2 T1	992	9.6	992	9.6	0.342	2.9	LOS A	3.6	27.3	0.33	0.29	0.33	43.8
3a R1	325	8.7	325	8.7	0.621	31.5	LOS C	6.9	51.8	0.92	0.82	0.92	12.7
Approach	1317	9.4	1317	9.4	0.621	10.0	LOS A	6.9	51.8	0.48	0.42	0.48	26.8
NorthEast: ALEXANDER STREET													
24a L1	343	6.4	343	6.4	0.429	24.4	LOS B	6.8	49.9	0.88	0.82	0.88	20.5
26b R3	60	3.5	60	3.5	0.504	48.3	LOS D	1.5	11.0	1.00	0.76	1.01	7.3
Approach	403	6.0	403	6.0	0.504	28.0	LOS B	6.8	49.9	0.89	0.81	0.90	17.9
North: PACIFIC HIGHWAY													
7b L3	43	0.0	43	0.0	0.607	11.0	LOS A	3.1	23.6	0.30	0.31	0.30	36.2
8 T1	1324	12.0	1324	12.0	0.607	9.7	LOS A	8.1	62.6	0.46	0.42	0.46	36.2
Approach	1367	11.6	1367	11.6	0.607	9.8	LOS A	8.1	62.6	0.46	0.42	0.46	36.2
All Vehicles	3087		3087	9.9	0.621	12.2	LOS A	8.1	62.6	0.52	0.47	0.52	29.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov	Description	Den	Average	Level of Average Back of Queue			Prop. Queued	Effective Stop Rate
		Flow $\mathrm{ped} / \mathrm{h}$	Delay sec	Service	Pedestrian ped	Distance m		
P6	NorthEast Full Crossing	39	34.3	LOS D	0.1	0.1	0.93	0.93
P3	North Full Crossing	18	34.3	LOS D	0.0	0.0	0.93	0.93
All Pe	estrians	57	34.3	LOS D			0.93	0.93

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Processed: Tuesday, 12 May 2020 10:32:30 AM

Project: C:IUsers\robert\Documents\Crows Nest Triangle\[CC200015] EXISTING + DEVELOPMENT.sip8

䗆 Network: N101 [FIVE WAYS Existing PM + DEVELOPMENT]

PACIFIC / ALEXANDER - EXISTING PM + DEVT
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov Turn	Demand Total	$\begin{gathered} \text { =lows } \\ \mathrm{HV} \end{gathered}$	Arrival Total	$\begin{aligned} & \text { lows } \\ & \text { HV } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Prop. Vehicles Distance Queued\qquad veh m			Effective Aver. No.Average Stop Cycles Speed Rate		
	veh/h		veh/h	\%									km/h
South: PACIFIC HIGHWAY													
$2 \quad$ T1	1173	6.6	1173	6.6	0.711	8.4	LOS A	9.7	71.9	0.57	0.52	0.57	29.0
3a R1	339	8.1	339	8.1	0.562	34.2	LOS C	8.4	62.7	0.88	0.81	0.88	11.9
Approach	1512	7.0	1512	7.0	0.711	14.2	LOS A	9.7	71.9	0.64	0.58	0.64	21.7
NorthEast: ALEXANDER STREET													
24a L1	318	4.0	318	4.0	0.683	46.2	LOS D	6.8	49.5	0.98	0.85	1.03	13.2
26b R3	122	0.0	122	0.0	0.683	44.8	LOS D	5.9	41.8	0.94	0.83	0.98	7.8
Approach	440	2.9	440	2.9	0.683	45.8	LOS D	6.8	49.5	0.97	0.84	1.01	11.9
North: PACIFIC HIGHWAY													
7b L3	55	0.0	55	0.0	0.536	11.9	LOS A	2.1	15.4	0.24	0.30	0.24	32.8
8 T1	884	5.5	884	5.5	0.536	8.9	LOS A	5.2	38.1	0.35	0.33	0.35	37.2
Approach	939	5.2	939	5.2	0.536	9.1	LOS A	5.2	38.1	0.35	0.33	0.35	37.0
All Vehicles	2891	5.8	2891	5.8	0.711	17.4	LOS B	9.7	71.9	0.59	0.54	0.60	22.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov	Description	Demand Flow lod	Average Delay sec	Level of Service	Average Back of Queue Pedestrian ped	Prop. Distance Queued	Effective Stop Rate	
P6	NorthEast Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	14	44.2	LOS E	0.0	0.0	0.94	0.94
All Pedestrians	66	44.3	LOS E		0.9	0.94		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Processed: Tuesday, 12 May 2020 10:32:59 AM

Project: C:IUsers\robert\Documents\Crows Nest Triangle\[CC200015] EXISTING + DEVELOPMENT.sip8

MOVEMENT SUMMARY
日 Site：PFS［PACIFIC／FALCON／SHIRLEY－EXISTING AM＋ DEVT］ \qquad
暒审 Network：N101［FIVE WAYS Existing AM＋DEVELOPMENT］
PACIFIC／FALCON／SHIRLEY－EXISTING AM＋DEVT
Site Category：（None）
Signals－Fixed Time Coordinated Cycle Time $=80$ seconds（Network Optimum Cycle Time－Minimum Delay）

Movement Performance－Vehicles														
		Demand FlowsTotalHVveh／h		Arrival Flows Total HV		Deg． Satn v／c	Average Delay sec	Level of Service	Aver．Back of Queue Vehicles Distance		Prop． Queued	Effective Aver．No．Average Stop Cycles Speed		
South：PACIFIC HIGHWAY														
1	L2	187	11.2	187	11.2	0.185	14.3	LOS A	2.1	16.2	0.50	0.71	0.50	32.3
2	T1	712	9.5	712	9.5	0.807	30.1	LOS C	8.3	62.9	0.95	0.87	1.05	24.1
Appr	ach	899	9.8	899	9.8	0.807	26.8	LOS B	8.3	62.9	0.86	0.84	0.93	25.4
East：FALCON STREET														
4	L2	14	38.5	14	38.5	0.864	34.0	LOS C	10.8	80.0	0.97	0.94	1.12	10.2
5	T1	307	4.1	307	4.1	0.864	28.8	LOS C	10.8	80.0	0.97	0.94	1.12	22.5
6	R2	536	10.0	536	10.0	0.864	31.2	LOS C	10.8	80.0	0.94	0.92	1.09	21.2
Appr	ach	857	8.4	857	8.4	0.864	30.4	LOS C	10.8	80.0	0.95	0.93	1.10	21.5
North：PACIFIC HIGHWAY														
7	L2	414	9.7	414	9.7	0.458	15.7	LOS B	5.6	42.4	0.61	0.76	0.61	27.2
8	T1	839	4.5	839	4.5	0.923	49.3	LOS D	12.8	93.3	1.00	1.15	1.47	12.5
Appr	ach	1253	6.2	1253	6.2	0.923	38.2	LOS C	12.8	93.3	0.87	1.02	1.19	15.2
West：SHIRLEY ROAD														
10	L2	46	13.6	46	13.6	0.881	48.0	LOS D	11.0	80.9	1.00	1.08	1.35	21.3
11	T1	492	4.5	492	4.5	0.881	42.5	LOS C	11.0	80.9	1.00	1.08	1.36	14.0
12	R2	212	1.5	212	1.5	0.881	48.6	LOS D	10.4	74.4	1.00	1.08	1.37	13.4
Appr	ach	749	4.2	749	4.2	0.881	44.5	LOS D	11.0	80.9	1.00	1.08	1.36	14.4
All V	hicles	3758	7.2	3758	7.2	0.923	35.0	LOS C	12.8	93.3	0.91	0.97	1.14	18.7

Site Level of Service（LOS）Method：Delay（RTA NSW）．Site LOS Method is specified in the Network Data dialog（Network tab）．
Vehicle movement LOS values are based on average delay per movement．
Intersection and Approach LOS values are based on average delay for all vehicle movements．
SIDRA Standard Delay Model is used．Control Delay includes Geometric Delay．
Gap－Acceptance Capacity：SIDRA Standard（Akçelik M3D）．
HV（\％）values are calculated for All Movement Classes of All Heavy Vehicle Model Designation．

Movement Performance－Pedestrians

Mov	Demand Flow ped／h	Average Delay sec	Level of Service	Average Back of Queue Pedestrian ped	Prop． Distance Queued	Effective Stop Rate		
P1	South Full Crossing	124	34.4	LOS D	0.3	0.3	0.93	0.93
P2	East Full Crossing	39	34.3	LOS D	0.1	0.1	0.93	0.93
P3	North Full Crossing	64	34.3	LOS D	0.1	0.1	0.93	0.93
P4	West Full Crossing	95	34.4	LOS D	0.2	0.2	0.93	0.93
All Pedestrians	322	34.4	LOS D			0.9	0.93	

Level of Service（LOS）Method：SIDRA Pedestrian LOS Method（Based on Average Delay）
Pedestrian movement LOS values are based on average delay per pedestrian movement．

MOVEMENT SUMMARY
日 Site：PFS［PACIFIC／FALCON／SHIRLEY－EXISTING PM＋ DEVT］ \qquad
牢审 Network：N101［FIVE WAYS Existing PM＋DEVELOPMENT］
PACIFIC／FALCON／SHIRLEY－EXISTING PM＋DEVT
Site Category：（None）
Signals－Fixed Time Coordinated Cycle Time＝ 100 seconds（Network Optimum Cycle Time－Minimum Delay）

Movement Performance－Vehicles													
$\begin{array}{ll} \text { Mov } & \text { Turn } \\ \text { ID } \end{array}$	Demand Flows Total HV veh／h $\%$		Arrival Flows Total HV		Deg． Satn v／c	Average Delay sec	Level of Service	Aver．Back of Queue Prop． Vehicles Distance Queued veh m			Effective Aver．No．Average Stop Cycles Speed Rate		
South：PACIFIC HIGHWAY													
1 L2	559	0.6	559	0.6	0.950	48.5	LOS D	17.1	120.0	1.00	0.99	1.26	17.2
2 T1	618	1.0	618	1.0	0.509	26.9	LOS B	7.6	53.7	0.80	0.69	0.80	25.7
Approach	1177	0.8	1177	0.8	0.950	37.2	LOS C	17.1	120.0	0.90	0.83	1.02	20.8
East：FALCON STREET													
4 L2	14	0.0	14	0.0	0.966	72.8	LOS F	11.3	80.0	1.00	1.25	1.48	5.1
$5 \quad$ T1	561	1.1	561	1.1	0.966	67.7	LOSE	11.3	80.0	1.00	1.25	1.48	12.7
6 R2	437	4.3	437	4.3	0.813	44.9	LOS D	11.0	80.0	0.98	0.92	1.10	16.6
Approach	1012	2.5	1012	2.5	0.966	57.9	LOS E	11.3	80.0	0.99	1.10	1.32	14.1
North：PACIFIC HIGHWAY													
7 L2	325	3.6	325	3.6	0.573	37.0	LOS C	8.2	59.3	0.89	0.83	0.89	15.6
8 T1	834	8.2	834	8.2	0.719	33.7	LOS C	11.3	84.5	0.95	0.84	0.96	16.7
Approach	1159	6.9	1159	6.9	0.719	34.6	LOS C	11.3	84.5	0.93	0.83	0.94	16.4
West：SHIRLEY ROAD													
10 L2	47	2.2	47	2.2	0.841	53.5	LOS D	10.9	77.0	1.00	0.98	1.21	20.0
11 T1	456	1.2	456	1.2	0.841	48.5	LOS D	10.9	77.0	1.00	0.99	1.22	12.7
12 R2	108	0.0	108	0.0	0.841	55.1	LOS D	9.0	63.6	1.00	1.00	1.25	12.3
Approach	612	1.0	612	1.0	0.841	50.1	LOS D	10.9	77.0	1.00	0.99	1.23	13.3
All Vehicles	3959	3.1	3959	3.1	0.966	43.7	LOS D	17.1	120.0	0.95	0.93	1.11	16.4

Site Level of Service（LOS）Method：Delay（RTA NSW）．Site LOS Method is specified in the Network Data dialog（Network tab）．
Vehicle movement LOS values are based on average delay per movement．
Intersection and Approach LOS values are based on average delay for all vehicle movements．
SIDRA Standard Delay Model is used．Control Delay includes Geometric Delay．
Gap－Acceptance Capacity：SIDRA Standard（Akçelik M3D）．
HV（\％）values are calculated for All Movement Classes of All Heavy Vehicle Model Designation．

Movement Performance－Pedestrians

Mov ID	Description	Demand	Average	Level of	Average B	of Queue	Prop．	Effective
		Flow ped／h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate
P1	South Full Crossing	166	44.5	LOS E	0.4	0.4	0.95	0.95
P2	East Full Crossing	48	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	78	44.3	LOS E	0.2	0.2	0.94	0.94
P4	West Full Crossing	143	44.4	LOS E	0.4	0.4	0.95	0.95
All Pedestrians		436	44.4	LOS E			0.95	0.95

Level of Service（LOS）Method：SIDRA Pedestrian LOS Method（Based on Average Delay）
Pedestrian movement LOS values are based on average delay per pedestrian movement．

MOVEMENT SUMMARY

Site: FA [FALCON / ALEXANDER - EXISTING AM + GROWTH] 都 Network: N101 [FIVE WAYS Existing AM + GROWTH]
FALCON / ALEXANDER - EXISTING AM + GROWTH
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time $=150$ seconds (Network Practical Cycle Time)
Design Life Analysis (Final Year): Results for 10 years

Movement Performance - Vehicles													
Mov Turn ID	Demand Flows Arrival Flows				Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Vehicles Distance		Prop. Queued	Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: ALEXANDER STREET													
1 L2	41	5.4	41	5.4	0.313	46.1	LOS ${ }^{11}$	4.5	34.0	0.73	0.65	0.73	7.9
2 T1	293	9.4	293	9.4	0.313	38.6	LOS C	5.3	40.1	0.69	0.60	0.69	19.2
3 R2	2	0.0	2	0.0	0.313	42.9	LOS ${ }^{11}$	5.3	40.1	0.67	0.57	0.67	19.2
Approach	336	8.9	336	8.9	0.313	39.5	LOS C	5.3	40.1	0.70	0.60	0.70	18.0
East: FALCON STREET													
4 L2	326	5.8	326	5.8	0.954	74.5	LOS F ${ }^{11}$	36.5	271.0	1.00	1.11	1.32	9.2
$5 \quad$ T1	833	8.6	833	8.6	0.954	73.7	LOS F ${ }^{11}$	36.5	271.0	1.00	1.16	1.33	8.9
Approach	1159	7.8	1159	7.8	0.954	73.9	LOS F ${ }^{11}$	36.5	271.0	1.00	1.15	1.33	9.0
North: ALEXANDER STREET													
7 L2	14	15.4	14	15.4	0.082	42.8	LOS ${ }^{11}$	1.2	9.1	0.72	0.62	0.72	22.2
8 T1	74	9.0	74	9.0	0.082	37.0	LOS C	1.5	11.4	0.72	0.58	0.72	15.4
Approach	88	10.0	88	10.0	0.082	37.9	LOS C	1.5	11.4	0.72	0.58	0.72	16.8
West: FALCON STREET													
10 L2	85	5.2	85	5.2	0.436	22.7	LOS B	10.8	80.0	0.59	0.57	0.59	27.6
11 T1	865	7.0	865	7.0	0.436	21.8	LOS B	10.8	80.0	0.71	0.65	0.71	26.7
Approach	951	6.9	951	6.9	0.436	21.8	LOS B	10.8	80.0	0.70	0.65	0.70	26.8
All Vehicles	2534	7.7	2534	7.7	0.954	48.6	LOS ${ }^{11}$	36.5	271.0	0.84	0.87	0.99	14.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	48	69.3	LOS F^{12}	0.2	0.2	0.96	0.96
P2	East Full Crossing	68	69.3	LOS F^{12}	0.3	0.3	0.96	0.96
P3	North Full Crossing	63	69.3	LOS F^{12}	0.3	0.3	0.96	0.96
P4	West Full Crossing	62	69.3	LOS F^{12}	0.3	0.3	0.96	0.96
All P	destrians	241	69.3	LOS F^{12}			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

MOVEMENT SUMMARY

Site: FA [FALCON / ALEXANDER - EXISTING PM + GROWTH]
FALCON / ALEXANDER - EXISTING PM + GROWTH
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time $=130$ seconds (Network Practical Cycle Time)
Design Life Analysis (Final Year): Results for 10 years

Movement Performance - Vehicles													
Mov Turn ID	Demand Flows Arrival Flows				Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Vehicles Distance		Prop. Queued	Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: ALEXANDER STREET													
1 L2	19	23.5	19	23.5	0.815	77.4	LOS F ${ }^{11}$	6.9	51.9	1.00	0.88	1.12	4.9
$2 \quad \mathrm{~T} 1$	333	7.3	333	7.3	0.815	71.5	LOS F ${ }^{11}$	7.7	57.1	1.00	0.88	1.11	12.2
3 R 2	2	0.0	2	0.0	0.815	76.8	LOS F ${ }^{11}$	7.7	57.1	1.00	0.88	1.10	12.1
Approach	354	8.1	354	8.1	0.815	71.9	LOS F ${ }^{11}$	7.7	57.1	1.00	0.88	1.11	11.9
East: FALCON STREET													
4 L2	370	2.4	370	2.4	0.831	17.5	LOS B	19.5	139.2	0.68	0.74	0.70	28.3
$5 \quad$ T1	1023	2.2	1023	2.2	0.831	14.4	LOS A	19.5	139.2	0.67	0.70	0.72	27.5
Approach	1394	2.2	1394	2.2	0.831	15.2	LOS B	19.5	139.2	0.67	0.71	0.71	27.7
North: ALEXANDER STREET													
7 L2	17	6.7	17	6.7	0.215	62.3	LOS E ${ }^{11}$	1.5	11.4	0.94	0.72	0.94	17.4
$8 \quad$ T1	76	5.8	76	5.8	0.215	56.4	LOS ${ }^{11}$	1.8	13.1	0.94	0.71	0.94	11.1
Approach	93	6.0	93	6.0	0.215	57.4	LOS E ${ }^{11}$	1.8	13.1	0.94	0.71	0.94	12.4
West: FALCON STREET													
10 L2	82	1.4	82	1.4	0.275	12.6	LOS A	7.8	55.8	0.55	0.54	0.55	38.0
11 T1	736	2.0	736	2.0	0.275	9.9	LOS A	10.9	77.9	0.67	0.62	0.67	37.9
Approach	818	1.9	818	1.9	0.275	10.2	LOS A	10.9	77.9	0.65	0.61	0.65	37.9
All Vehicles	2658	3.0	2658	3.0	0.831	22.7	LOS B	19.5	139.2	0.72	0.70	0.76	24.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	13	59.2	LOS E ${ }^{12}$	0.0	0.0	0.95	0.95
P2	East Full Crossing	15	59.2	LOS E ${ }^{12}$	0.1	0.1	0.95	0.95
P3	North Full Crossing	16	59.2	LOS E ${ }^{12}$	0.1	0.1	0.95	0.95
P4	West Full Crossing	19	59.2	LOS E ${ }^{12}$	0.1	0.1	0.95	0.95
All Pedestrians		63	59.2	LOS E^{12}			0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

PACIFIC／ALEXANDER－EXISTING AM＋GROWTH
Site Category：（None）
Signals－Fixed Time Coordinated Cycle Time＝ 150 seconds（Network Practical Cycle Time）
Design Life Analysis（Final Year）：Results for 10 years

Movement Performance－Vehicles													
Mov Turn ID	Demand Flows Arrival Flows Total HV Total HV				Deg． Satn v／c	Average Delay sec	Level of Service	Aver．Back of Queue Prop． Vehicles Distance Queued			Effective Aver．No．Average Stop Cycles Speed		
	veh／h		veh／h	\％				veh	m				km／h
South：PACIFIC HIGHWAY													
$2 \quad \mathrm{~T} 1$	1041	9.6	1041	9.6	0.455	4.4	LOS A	9.0	68.2	0.32	0.30	0.32	38.7
3a R1	315	9.5	315	9.5	0.693	33.8	LOS C	9.3	70.4	0.72	0.75	0.72	12.0
Approach	1356	9.5	1356	9.5	0.693	11.2	LOS A	9.3	70.4	0.41	0.40	0.41	25.1
NorthEast：ALEXANDER STREET													
24a L1	337	6.9	337	6.9	0.311	23.3	LOS B	9.0	66.9	0.66	0.75	0.66	21.1
26b R3	63	3.5	63	3.5	0.743	85.3	LOS F ${ }^{11}$	3.1	22.2	1.00	0.86	1.18	4.4
Approach	400	6.4	400	6.4	0.743	33.1	LOS C	9.0	66.9	0.71	0.77	0.74	15.9
North：PACIFIC HIGHWAY													
7b L3	19	0.0	19	0.0	0.788	18.0	LOS B	9.7	74.9	0.50	0.46	0.50	24.1
8 T1	1390	12.0	1390	12.0	0.788	24.0	LOS B	15.5	120.0	0.64	0.57	0.64	23.2
Approach	1409	11.8	1409	11.8	0.788	23.9	LOS B	15.5	120.0	0.63	0.57	0.64	23.2
All Vehicles	3165	10.2	3165	10.2	0.788	19.6	LOS B	15.5	120.0	0.55	0.52	0.56	22.3

Site Level of Service（LOS）Method：Delay（RTA NSW）．Site LOS Method is specified in the Network Data dialog（Network tab）． Vehicle movement LOS values are based on average delay per movement．
Intersection and Approach LOS values are based on average delay for all vehicle movements．
SIDRA Standard Delay Model is used．Control Delay includes Geometric Delay．
Gap－Acceptance Capacity：SIDRA Standard（Akçelik M3D）．
HV（\％）values are calculated for All Movement Classes of All Heavy Vehicle Model Designation．
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog．

Movement Performance－Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped／h	Average Delay sec	Level of Service	Average Back Pedestrian ped	解 Queue Distance \qquad m	Prop． Queued	Effective Stop Rate
P6	NorthEast Full Crossing	47	69.3	LOS ${ }^{12}$	0.2	0.2	0.96	0.96
P3	North Full Crossing	21	69.2	LOS F^{12}	0.1	0.1	0.96	0.96
All Pedestrians		68	69.2	LOS F^{12}			0.96	0.96

Level of Service（LOS）Method：SIDRA Pedestrian LOS Method（Based on Average Delay）
Pedestrian movement LOS values are based on average delay per pedestrian movement．
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements．
12 Level of Service is worse than the Pedestrian Level of Service Target specified in the Parameter Settings dialog．

SIDRA INTERSECTION 8．0｜Copyright © 2000－2019 Akcelik and Associates Pty Ltd｜sidrasolutions．com
Organisation：BARKER RYAN STEWART｜Processed：Tuesday， 12 May 2020 10：40：13 AM
Project：C：IUsers\robert｜DocumentsICrows Nest Triangle\［CC200015］EXISTING＋GROWTH．sip8

PACIFIC / ALEXANDER - EXISTING PM + GROWTH
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network Practical Cycle Time)
Design Life Analysis (Final Year): Results for 10 years

Movement Performance - Vehicles													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	Demand Flows Arrival Flows Total HV Total HV				Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Prop. Vehicles Distance Queued			Effective Aver. No.Average Stop Cycles Speed		
	veh/h		veh/h	\%				veh	m				km/h
South: PACIFIC HIGHWAY													
$2 \quad \mathrm{~T} 1$	1231	6.6	1231	6.6	0.725	9.2	LOS A	12.0	88.6	0.53	0.49	0.53	27.8
3a R1	325	8.8	325	8.8	0.859	49.5	LOS ${ }^{11}$	11.4	86.0	0.78	0.89	1.00	8.7
Approach	1556	7.1	1556	7.1	0.859	17.6	LOS B	12.0	88.6	0.59	0.57	0.63	18.8
NorthEast: ALEXANDER STREET													
24a L1	318	4.2	318	4.2	0.713	58.1	LOS E ${ }^{11}$	9.0	65.6	0.98	0.85	1.02	11.1
26b R3	128	0.0	128	0.0	0.713	53.6	LOS D ${ }^{11}$	7.6	53.6	0.94	0.83	0.97	6.6
Approach	447	3.0	447	3.0	0.713	56.8	LOS E ${ }^{11}$	9.0	65.6	0.97	0.85	1.01	10.0
North: PACIFIC HIGHWAY													
7b L3	27	0.0	27	0.0	0.607	18.0	LOS B	4.6	33.4	0.40	0.38	0.40	23.8
8 T1	928	5.5	928	5.5	0.607	14.7	LOS B	7.3	53.5	0.47	0.41	0.47	30.3
Approach	955	5.3	955	5.3	0.607	14.8	LOS B	7.3	53.5	0.46	0.41	0.46	30.1
All Vehicles	2958	5.9	2958	5.9	0.859	22.6	LOS B	12.0	88.6	0.60	0.56	0.63	19.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance \qquad m	Prop. Queued	Effective Stop Rate
P6	NorthEast Full Crossing	63	59.3	LOS E ${ }^{12}$	0.2	0.2	0.96	0.96
P3	North Full Crossing	16	59.2	LOS E ${ }^{12}$	0.1	0.1	0.95	0.95
All Pedestrians		80	59.3	LOS E^{12}			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
12 Level of Service is worse than the Pedestrian Level of Service Target specified in the Parameter Settings dialog.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Processed: Tuesday, 12 May 2020 10:41:01 AM

Project: C:IUsers\robert|DocumentsICrows Nest Triangle\[CC200015] EXISTING + GROWTH.sip8

MOVEMENT SUMMARY

Site: PFS [PACIFIC / FALCON / SHIRLEY - EXISTING AM + GROWTH]

的审 Network: N101 [FIVE WAYS Existing AM + GROWTH]

PACIFIC / FALCON / SHIRLEY - EXISTING AM + GROWTH
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time $=150$ seconds (Network Practical Cycle Time)
Design Life Analysis (Final Year): Results for 10 years

Movement Performance - Vehicles													
Mov Turn ID	Demand Total veh/h	Flows HV \%	Arriva Total veh/h	Flows HV \%	Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back Vehicles veh	Queue stance m	Prop. Queued	Effective Stop Rate	ver. No. A Cycles	erage peed km/h
South: PACIFIC HIGHWAY													
1 L2	197	11.2	197	11.2	0.166	15.1	LOS B	3.2	24.2	0.39	0.68	0.39	31.7
2 T1	747	9.5	747	9.5	0.888	65.1	LOS E^{11}	15.9	120.0	1.00	0.99	1.15	14.2
Approach	944	9.8	944	9.8	0.888	54.7	LOS ${ }^{11}$	15.9	120.0	0.87	0.92	1.00	16.0
East: FALCON STREET													
4 L2	14	38.5	14	38.5	0.986	80.9	LOS F ${ }^{11}$	10.8	80.0	1.00	1.08	1.30	4.4
$5 \quad \mathrm{~T} 1$	312	4.3	312	4.3	0.986	75.8	LOS F ${ }^{11}$	10.8	80.0	1.00	1.08	1.30	11.4
6 R2	549	10.3	549	10.3	0.986	78.9	LOS F ${ }^{11}$	10.8	80.0	1.00	1.03	1.31	10.9
Approach	875	8.6	875	8.6	0.986	77.8	LOS F ${ }^{11}$	10.8	80.0	1.00	1.05	1.30	11.0
North: PACIFIC HIGHWAY													
7 L2	434	9.7	434	9.7	0.964	95.4	LOS F^{11}	27.4	207.4	1.00	1.08	1.41	7.2
8 T1	865	4.6	865	4.6	0.998	109.8	LOS ${ }^{11}$	26.6	193.3	1.00	1.25	1.48	6.4
Approach	1300	6.3	1300	6.3	0.998	105.0	LOS F ${ }^{11}$	27.4	207.4	1.00	1.19	1.46	6.6
West: SHIRLEY ROAD													
10 L2	49	13.6	49	13.6	0.999	120.3	LOS F^{11}	27.6	202.2	1.00	1.31	1.54	10.6
11 T1	516	4.5	516	4.5	0.999	115.3	LOS F ${ }^{11}$	27.6	202.2	1.00	1.28	1.54	6.2
12 R2	211	1.6	211	1.6	0.999	122.3	LOS F^{11}	25.6	183.6	1.00	1.23	1.55	6.0
Approach	776	4.3	776	4.3	0.999	117.5	LOS F ${ }^{11}$	27.6	202.2	1.00	1.27	1.54	6.4
All Vehicles	3895	7.3	3895	7.3	0.999	89.2	LOS ${ }^{11}$	27.6	207.4	0.97	1.11	1.33	9.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Movement Performance - Pedestrians								
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	149	69.6	LOS F^{12}	0.6	0.6	0.97	0.97
P2	East Full Crossing	47	69.3	LOS F ${ }^{12}$	0.2	0.2	0.96	0.96
P3	North Full Crossing	77	69.3	LOS F^{12}	0.3	0.3	0.96	0.96
P4	West Full Crossing	114	69.4	LOS F^{12}	0.5	0.5	0.96	0.96
All Pedestrians		387	69.4	LOS F^{12}			0.96	0.96

MOVEMENT SUMMARY

Site: PFS [PACIFIC / FALCON / SHIRLEY - EXISTING PM + GROWTH]

审审 Network: N101 [FIVE WAYS Existing PM + GROWTH]

PACIFIC / FALCON / SHIRLEY - EXISTING PM + GROWTH
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time $=130$ seconds (Network Practical Cycle Time)
Design Life Analysis (Final Year): Results for 10 years

Movement Performance - Vehicles													
Mov Turn ID	Demand Total veh/h	Fows HV \%	Arriva Total veh/h	ows HV \%	Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective A Stop Rate	Aver. No.A Cycles	erage peed km/h
South: PACIFIC HIGHWAY													
1 L2	587	0.6	587	0.6	0.957	58.0	LOS E^{11}	17.1	120.0	1.00	0.98	1.21	15.1
2 T1	649	1.0	649	1.0	0.513	33.5	LOS C	10.2	71.8	0.80	0.68	0.80	22.6
Approach	1236	0.8	1236	0.8	0.957	45.1	LOS ${ }^{11}$	17.1	120.0	0.89	0.82	0.99	18.3
East: FALCON STREET													
4 L2	14	0.0	14	0.0	0.971	85.8	LOS F^{11}	11.3	80.0	1.00	1.19	1.38	4.3
$5 \quad$ T1	578	1.1	578	1.1	0.971	80.6	LOS F ${ }^{11}$	11.3	80.0	1.00	1.19	1.38	11.1
6 R2	450	4.4	450	4.4	0.816	54.0	LOS ${ }^{11}$	11.0	80.0	0.98	0.91	1.06	14.6
Approach	1042	2.5	1042	2.5	0.971	69.2	LOS E ${ }^{11}$	11.3	80.0	0.99	1.07	1.25	12.2
North: PACIFIC HIGHWAY													
7 L2	342	3.6	342	3.6	0.695	47.1	LOS ${ }^{11}$	11.6	84.0	0.93	0.85	0.93	12.9
8 T1	858	8.4	858	8.4	0.710	41.5	LOS C	14.6	109.6	0.94	0.82	0.94	14.3
Approach	1199	7.0	1199	7.0	0.710	43.1	LOS ${ }^{11}$	14.6	109.6	0.94	0.83	0.94	13.9
West: SHIRLEY ROAD													
10 L2	50	2.2	50	2.2	0.966	93.6	LOS F^{11}	18.7	132.3	1.00	1.19	1.47	13.1
11 T1	479	1.2	479	1.2	0.966	89.9	LOS F ${ }^{11}$	18.7	132.3	1.00	1.19	1.50	7.7
12 R2	101	0.0	101	0.0	0.966	99.1	LOS F^{11}	14.3	100.5	1.00	1.20	1.55	7.3
Approach	629	1.1	629	1.1	0.966	91.7	LOS F ${ }^{11}$	18.7	132.3	1.00	1.19	1.51	8.1
All Vehicles	4106	3.1	4106	3.1	0.971	57.8	LOS E^{11}	18.7	132.3	0.95	0.95	1.12	13.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Movement Performance - Pedestrians								
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance \qquad	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	200	59.6	LOS E ${ }^{12}$	0.7	0.7	0.96	0.96
P2	East Full Crossing	58	59.3	LOS E ${ }^{12}$	0.2	0.2	0.96	0.96
P3	North Full Crossing	93	59.4	LOS E ${ }^{12}$	0.3	0.3	0.96	0.96
P4	West Full Crossing	172	59.6	LOS E ${ }^{12}$	0.6	0.6	0.96	0.96
All Pedestrians		523	59.5	LOS E ${ }^{12}$			0.96	0.96

MOVEMENT SUMMARY

日 Site：FA［FALCON／ALEXANDER－EXISTING AM＋GROWTH＋审审 Network：N101［FIVE WAYS DEVT ］

FALCON／ALEXANDER－EXISTING AM＋GROWTH＋DEVT
Site Category：（None）
Signals－Fixed Time Coordinated Cycle Time＝ 150 seconds（Network Practical Cycle Time）
Design Life Analysis（Final Year）：Results for 10 years

Movement Performance－Vehicles														
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$		Demand Flows Arrival Flows Total HV Total HV				Deg． Satn v／c	Average Delay sec	Level of Service	Aver．Back of Queue Prop． Vehicles Distance Queued			Effective Aver．No．Average Stop Cycles Speed		
		veh／h		veh／h	\％				veh	m				km／h
South：ALEXANDER STREET														
1	L2	65	3.4	65	3.4	0.433	50.4	LOS ${ }^{11}$	6.5	48.0	0.85	0.75	0.85	7.2
2	T1	293	9.4	293	9.4	0.433	44.5	LOS ${ }^{11}$	7.2	53.8	0.80	0.71	0.80	17.1
3	R2	45	0.0	45	0.0	0.433	49.8	LOS ${ }^{11}$	7.2	53.8	0.77	0.68	0.77	16.9
Appr	ach	403	7.4	403	7.4	0.433	46.0	LOS ${ }^{11}$	7.2	53.8	0.81	0.71	0.81	15.7
East：FALCON STREET														
4	L2	375	5.0	375	5.0	0.954	71.8	LOS F^{11}	37.8	279.6	1.00	1.10	1.31	9.5
5	T1	833	8.6	833	8.6	0.954	71.8	LOS F^{11}	37.8	279.6	1.00	1.16	1.32	9.1
Appr	ach	1208	7.5	1208	7.5	0.954	71.8	LOS F^{11}	37.8	279.6	1.00	1.14	1.32	9.2
North：ALEXANDER STREET														
7	L2	14	15.4	14	15.4	0.088	45.2	LOS ${ }^{11}$	1.2	9.3	0.74	0.63	0.74	21.4
8	T1	74	9.0	74	9.0	0.088	39.3	LOS C	1.6	11.8	0.75	0.59	0.75	14.7
Appr	ach	88	10.0	88	10.0	0.088	40.2	LOS C	1.6	11.8	0.75	0.60	0.75	16.1
West：FALCON STREET														
10	L2	85	5.2	85	5.2	0.421	21.3	LOS B	10.8	80.0	0.60	0.58	0.60	28.7
11	T1	865	7.0	865	7.0	0.421	19.9	LOS B	10.8	80.0	0.70	0.65	0.70	28.0
Appr	ach	951	6.9	951	6.9	0.421	20.0	LOS B	10.8	80.0	0.69	0.64	0.69	28.1
All V	hicles	2650	7.3	2650	7.3	0.954	48.3	LOS ${ }^{11}$	37.8	279.6	0.85	0.88	1.00	14.4

Site Level of Service（LOS）Method：Delay（RTA NSW）．Site LOS Method is specified in the Network Data dialog（Network tab）． Vehicle movement LOS values are based on average delay per movement．
Intersection and Approach LOS values are based on average delay for all vehicle movements．
SIDRA Standard Delay Model is used．Control Delay includes Geometric Delay．
Gap－Acceptance Capacity：SIDRA Standard（Akçelik M3D）．
HV（\％）values are calculated for All Movement Classes of All Heavy Vehicle Model Designation．
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog．

Movement Performance－Pedestrians

Mov		Demand	Average	Level of	Average	Queue	Prop．	Effective
ID	Description	$\begin{aligned} & \text { Flow } \\ & \text { ped/h } \end{aligned}$	$\begin{aligned} & \text { Delay } \\ & \text { sec } \end{aligned}$	Service	Pedestrian ped	Distance \qquad	Queued	Stop Rate
P1	South Full Crossing	48	69.3	LOS ${ }^{12}$	0.2	0.2	0.96	0.96
P2	East Full Crossing	68	69.3	LOS F^{12}	0.3	0.3	0.96	0.96
P3	North Full Crossing	63	69.3	LOS F^{12}	0.3	0.3	0.96	0.96
P4	West Full Crossing	62	69.3	LOS F ${ }^{12}$	0.3	0.3	0.96	0.96
All Pedestrians		241	69.3	LOS F ${ }^{12}$			0.96	0.96

MOVEMENT SUMMARY

日 Site：FA［FALCON／ALEXANDER－EXISTING PM＋GROWTH＋审审 Network：N101［FIVE WAYS DEVT ］
 Existing PM＋GROWTH＋DEVT］

FALCON／ALEXANDER－EXISTING PM＋GROWTH＋DEVT
Site Category：（None）
Signals－Fixed Time Coordinated Cycle Time $=140$ seconds（Network Practical Cycle Time）
Design Life Analysis（Final Year）：Results for 10 years

Site Level of Service（LOS）Method：Delay（RTA NSW）．Site LOS Method is specified in the Network Data dialog（Network tab）． Vehicle movement LOS values are based on average delay per movement．
Intersection and Approach LOS values are based on average delay for all vehicle movements．
SIDRA Standard Delay Model is used．Control Delay includes Geometric Delay．
Gap－Acceptance Capacity：SIDRA Standard（Akçelik M3D）．
HV（\％）values are calculated for All Movement Classes of All Heavy Vehicle Model Designation．

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog．

Movement Performance－Pedestrians								
Mov ID	Description	Demand Flow ped／h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance \qquad m	Prop． Queued	Effective Stop Rate
P1	South Full Crossing	13	64.2	LOS F^{12}	0.0	0.0	0.96	0.96
P2	East Full Crossing	15	64.2	LOS F^{12}	0.1	0.1	0.96	0.96
P3	North Full Crossing	16	64.2	LOS F^{12}	0.1	0.1	0.96	0.96
P4	West Full Crossing	19	64.2	LOS F^{12}	0.1	0.1	0.96	0.96
All Pedestrians		63	64.2	LOS F^{12}			0.96	0.96

MOVEMENT SUMMARY

日 Site：PA［PACIFIC／ALEXANDER－EXISTING AM＋GROWTH＋ DEVT］

PACIFIC／ALEXANDER－EXISTING AM＋GROWTH＋DEVT
Site Category：（None）
Signals－Fixed Time Coordinated Cycle Time＝ 150 seconds（Network Practical Cycle Time）
Design Life Analysis（Final Year）：Results for 10 years

Movement Performance－Vehicles													
Mov Turn ID	Demand Flows Arrival Flows				Deg． Satn v／c	Average Delay sec	Level of Service	Aver．Back of Queue Vehicles Distance		Prop． Queued	Effective Aver．No．Average Stop Cycles Speed		
	veh／h		veh／h	\％				veh	m				km／h
South：PACIFIC HIGHWAY													
2 T1	1041	9.6	1041	9.6	0.452	4.1	LOS A	8.7	65.8	0.31	0.28	0.31	39.7
3a R1	342	8.7	342	8.7	0.799	39.0	LOS C	11.1	83.6	0.71	0.79	0.79	10.7
Approach	1383	9.4	1383	9.4	0.799	12.7	LOS A	11.1	83.6	0.41	0.41	0.43	23.3
NorthEast：ALEXANDER STREET													
24a L1	360	6.4	360	6.4	0.328	22.4	LOS B	9.3	69.1	0.64	0.74	0.64	21.7
26b R3	63	3.5	63	3.5	0.793	88.5	LOS F ${ }^{11}$	3.2	22.7	1.00	0.89	1.25	4.2
Approach	423	6.0	423	6.0	0.793	32.2	LOS C	9.3	69.1	0.69	0.77	0.73	16.3
North：PACIFIC HIGHWAY													
7b L3	45	0.0	45	0.0	0.821	18.6	LOS B	10.8	82.9	0.54	0.52	0.55	23.0
8 T1	1390	12.0	1390	12.0	0.821	25.3	LOS B	15.5	120.0	0.67	0.62	0.69	22.3
Approach	1436	11.6	1436	11.6	0.821	25.1	LOS B	15.5	120.0	0.67	0.61	0.68	22.3
All Vehicles	3242	9.9	3242	9.9	0.821	20.7	LOS B	15.5	120.0	0.56	0.55	0.58	21.5

Site Level of Service（LOS）Method：Delay（RTA NSW）．Site LOS Method is specified in the Network Data dialog（Network tab）．
Vehicle movement LOS values are based on average delay per movement．
Intersection and Approach LOS values are based on average delay for all vehicle movements．
SIDRA Standard Delay Model is used．Control Delay includes Geometric Delay．
Gap－Acceptance Capacity：SIDRA Standard（Akçelik M3D）．
HV（\％）values are calculated for All Movement Classes of All Heavy Vehicle Model Designation．
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog．

Movement Performance－Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped／h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop． Queued	Effective Stop Rate
P6	NorthEast Full Crossing	47	69.3	LOS F ${ }^{12}$	0.2	0.2	0.96	0.96
P3	North Full Crossing	21	69.2	LOS F ${ }^{12}$	0.1	0.1	0.96	0.96
All Pedestrians		68	69.2	LOS F^{12}			0.96	0.96

Level of Service（LOS）Method：SIDRA Pedestrian LOS Method（Based on Average Delay）
Pedestrian movement LOS values are based on average delay per pedestrian movement．
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements．
12 Level of Service is worse than the Pedestrian Level of Service Target specified in the Parameter Settings dialog．

MOVEMENT SUMMARY

Site: PA [PACIFIC / ALEXANDER - EXISTING PM + GROWTH + DEVT]
 \qquad
 軮 Network: N101 [FIVE WAYS

PACIFIC / ALEXANDER - EXISTING PM + GROWTH + DEVT
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Practical Cycle Time)
Design Life Analysis (Final Year): Results for 10 years

Movement Performance - Vehicles													
Mov Turn ID	Demand Total veh/h	Flows HV \%	Arriva Total veh/h	lows HV \%	Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Prop. Vehicles Distance Queued			Effective Aver. No.Average Stop Cycles Speed		
South: PACIFIC HIGHWAY													
2 T1	1231	6.6	1231	6.6	0.708	8.0	LOS A	11.5	84.7	0.49	0.45	0.49	29.7
3a R1	356	8.1	356	8.1	0.818	37.8	LOS C	11.4	84.9	0.70	0.82	0.82	10.9
Approach	1587	7.0	1587	7.0	0.818	14.7	LOS B	11.5	84.9	0.53	0.53	0.56	21.2
NorthEast: ALEXANDER STREET													
24a L1	334	4.0	334	4.0	0.842	70.3	LOS E^{11}	10.9	78.9	1.00	0.91	1.14	9.5
26b R3	128	0.0	128	0.0	0.842	66.1	LOS E ${ }^{11}$	9.2	65.4	1.00	0.89	1.13	5.5
Approach	462	2.9	462	2.9	0.842	69.2	LOS E ${ }^{11}$	10.9	78.9	1.00	0.90	1.14	8.5
North: PACIFIC HIGHWAY													
7b L3	40	0.0	40	0.0	0.831	41.9	LOS C	11.3	82.5	0.89	0.80	0.93	10.8
8 T1	928	5.5	928	5.5	0.831	37.5	LOS C	12.5	91.3	0.91	0.80	0.94	17.2
Approach	968	5.3	968	5.3	0.831	37.7	LOS C	12.5	91.3	0.91	0.80	0.94	17.0
All Vehicles	3017	5.8	3017	5.8	0.842	30.4	LOS C	12.5	91.3	0.72	0.67	0.77	15.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P6	NorthEast Full Crossing	63	64.3	LOS F ${ }^{12}$	0.2	0.2	0.96	0.96
P3	North Full Crossing	16	64.2	LOS F ${ }^{12}$	0.1	0.1	0.96	0.96
All Pedestrians		80	64.3	LOS F^{12}			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
12 Level of Service is worse than the Pedestrian Level of Service Target specified in the Parameter Settings dialog.

Site: PFS [PACIFIC / FALCON / SHIRLEY - EXISTING AM + GROWTH+ DEVT]

审审 Network: N101 [FIVE WAYS Existing AM + GROWTH + DEVT]
PACIFIC / FALCON / SHIRLEY - EXISTING AM + GROWTH + DEVT
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 150 seconds (Network Practical Cycle Time)
Design Life Analysis (Final Year): Results for 10 years

Movement Performance - Vehicles													
Mov Turn ID	Demand FlowsTotal HVveh/h		Arrival Flows Total HV		Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back of Queue Vehicles Distance		Prop. Queued	Effective Aver. No.Average Stop Cycles Speed		
South: PACIFIC HIGHWAY													
1 L2	197	11.2	197	11.2	0.166	15.1	LOS B	3.2	24.2	0.39	0.68	0.39	31.7
2 T1	747	9.5	747	9.5	0.863	65.3	LOS E ${ }^{11}$	15.9	120.0	1.00	0.96	1.11	14.2
Approach	944	9.8	944	9.8	0.863	54.8	LOS ${ }^{11}$	15.9	120.0	0.87	0.90	0.96	16.0
East: FALCON STREET													
4 L2	14	38.5	14	38.5	1.013	97.4	LOS F ${ }^{11}$	10.8	80.0	1.00	1.14	1.38	3.7
5 T1	323	4.1	323	4.1	1.013	92.2	LOS F^{11}	10.8	80.0	1.00	1.14	1.38	9.7
6 R2	563	10.0	563	10.0	1.013	94.1	LOS F ${ }^{11}$	10.8	80.0	1.00	1.07	1.39	9.4
Approach	900	8.4	900	8.4	1.013	93.5	LOS F ${ }^{11}$	10.8	80.0	1.00	1.10	1.39	9.4
North: PACIFIC HIGHWAY													
$7 \quad$ L2	434	9.7	434	9.7	0.952	88.4	LOS F^{11}	26.4	199.8	1.00	1.06	1.37	7.7
8 T1	881	4.5	881	4.5	1.028	126.7	LOS F^{11}	29.6	215.6	1.00	1.34	1.59	5.5
Approach	1315	6.2	1315	6.2	1.028	114.0	LOS F ${ }^{11}$	29.6	215.6	1.00	1.25	1.52	6.1
West: SHIRLEY ROAD													
10 L2	49	13.6	49	13.6	1.031	139.5	LOS F^{11}	30.0	219.8	1.00	1.39	1.65	9.3
11 T1	516	4.5	516	4.5	1.031	134.4	LOS F^{11}	30.0	219.8	1.00	1.36	1.66	5.3
12 R 2	222	1.5	222	1.5	1.031	141.3	LOS F^{11}	27.8	199.3	1.00	1.29	1.67	5.2
Approach	787	4.2	787	4.2	1.031	136.7	LOS F ${ }^{11}$	30.0	219.8	1.00	1.35	1.66	5.5
All Vehicles	3946	7.2	3946	7.2	1.031	99.7	LOS F^{11}	30.0	219.8	0.97	1.15	1.38	8.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Movement Performance - Pedestrians

Mov	Description	Demand	Average	Level of	Average Ba	of Queue	Prop.	Effective
		Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate
P1	South Full Crossing	149	69.6	LOS F ${ }^{12}$	0.6	0.6	0.97	0.97
P2	East Full Crossing	47	69.3	LOS F ${ }^{12}$	0.2	0.2	0.96	0.96
P3	North Full Crossing	77	69.3	LOS F^{12}	0.3	0.3	0.96	0.96
P4	West Full Crossing	114	69.4	LOS ${ }^{12}$	0.5	0.5	0.96	0.96
All Pedestrians		387	69.4	LOS F^{12}			0.96	0.96

MOVEMENT SUMMARY

Site: PFS [PACIFIC / FALCON / SHIRLEY - EXISTING PM + GROWTH + DEVT]

蚄 Network: N101 [FIVE WAYS Existing PM + GROWTH + DEVT]

PACIFIC / FALCON / SHIRLEY - EXISTING PM + GROWTH + DEVT
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Practical Cycle Time)
Design Life Analysis (Final Year): Results for 10 years

Movement Performance - Vehicles													
Mov Turn ID	Demand Total veh/h	Fows HV \%	Arriva Total veh/h	ows HV \%	Deg. Satn v/c	Average Delay sec	Level of Service	Aver. Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective A Stop Rate	Aver. No.A Cycles	rage eed km/h
South: PACIFIC HIGHWAY													
1 L 2	587	0.6	587	0.6	0.984	71.5	LOS F ${ }^{11}$	17.1	120.0	1.00	1.01	1.28	12.9
2 T1	649	1.0	649	1.0	0.527	37.0	LOS C	10.7	75.7	0.79	0.68	0.79	21.2
Approach	1236	0.8	1236	0.8	0.984	53.4	LOS ${ }^{11}$	17.1	120.0	0.89	0.84	1.02	16.3
East: FALCON STREET													
4 L2	14	0.0	14	0.0	0.993	95.6	LOS F ${ }^{11}$	11.3	80.0	1.00	1.19	1.37	3.9
$5 \quad$ T1	589	1.1	589	1.1	0.993	90.4	LOS F ${ }^{11}$	11.3	80.0	1.00	1.19	1.37	10.1
6 R2	459	4.3	459	4.3	0.833	57.6	LOS E ${ }^{11}$	11.0	80.0	0.98	0.90	1.04	13.9
Approach	1062	2.5	1062	2.5	0.993	76.3	LOS F^{11}	11.3	80.0	0.99	1.06	1.23	11.3
North: PACIFIC HIGHWAY													
7 L2	342	3.6	342	3.6	0.769	55.0	LOS ${ }^{11}$	13.5	97.1	0.97	0.89	1.02	11.4
8 T1	874	8.2	874	8.2	0.848	55.6	LOS ${ }^{11}$	19.0	142.4	1.00	0.98	1.12	11.4
Approach	1216	6.9	1216	6.9	0.848	55.4	LOS ${ }^{11}$	19.0	142.4	0.99	0.95	1.09	11.4
West: SHIRLEY ROAD													
10 L2	50	2.2	50	2.2	0.977	103.4	LOS F ${ }^{11}$	21.2	149.7	1.00	1.22	1.48	12.1
11 T1	479	1.2	479	1.2	0.977	99.9	LOS F ${ }^{11}$	21.2	149.7	1.00	1.22	1.51	7.0
12 R2	114	0.0	114	0.0	0.977	109.8	LOS F ${ }^{11}$	15.9	112.3	1.00	1.22	1.56	6.7
Approach	642	1.0	642	1.0	0.977	102.0	LOS F^{11}	21.2	149.7	1.00	1.22	1.51	7.4
All Vehicles	4156	3.1	4156	3.1	0.993	67.3	LOS E^{11}	21.2	149.7	0.96	0.99	1.17	11.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Movement Performance - Pedestrians								
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance \qquad	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	200	64.7	LOS F^{12}	0.8	0.8	0.97	0.97
P2	East Full Crossing	58	64.3	LOS F^{12}	0.2	0.2	0.96	0.96
P3	North Full Crossing	93	64.4	LOS F ${ }^{12}$	0.4	0.4	0.96	0.96
P4	West Full Crossing	172	64.6	LOS F^{12}	0.7	0.7	0.96	0.96
All Pedestrians		523	64.5	LOS F^{12}			0.96	0.96

